信頼できる診療ガイドライン作成とCOI

全米科学アカデミー医学研究所Institute of Medicine (IOM, 現全米医学アカデミーNational Academy of Medicine, NAM) は2011年に”Clinical Practice Guidelines We Can Trust“を発表しています。まさに「信頼できる診療ガイドライン」です。

その中で、”第4章 信頼できる診療ガイドライン作成のための現在最善の方法とスタンダードの提言:パート1 作業の開始”でConflict of Interest (COI)利益相反に関するスタンダードが述べられています。

COIの申告、開示、管理は診療ガイドライン作成の過程の透明性確保のために必須であり、その目的は信頼できる診療ガイドラインを作成することです。この第4章はCOIに限定した議論ではなく、信頼できる診療ガイドラインを作成するために必須の事項の一つとして、COIの申告、開示、管理を位置付けています。COIについてはGuidelines International Network (G-I-N)も声明を発表していますが、こちらはCOIが中心の声明で、9つの原則について述べています。日本医学会からは「日本医学会診療ガイドライン策定参加資格基準ガイダンス2017年 」が発表されておりCOIについて詳しく述べられています。

COIは経済的COIだけではなく、知的COI Intellectual COIも問題になります。American Heart Association/the American College of Cardiology (ACC/AHA)その他9つの学会から2017年に出された高血圧の診療ガイドラインに対し、アメリカ家庭医学アカデミーは、作成プロセスの問題、より低い目標血圧によるベネフィットがわずかなことから支持しないことを決定したそうです(Miyazaki K 2018)。特に知的COIの問題、すなわちSPRINT試験の代表がガイドラインパネルの議長を務めたことが問題視されています。

IOMの”第4章 信頼できる診療ガイドライン作成のための現在最善の方法とスタンダードの提言:パート1 作業の開始”のまとめの項は以下の通りです。

  1. 透明性の確保
    1.1 CPG (Clinical Practice Guideline)の作成と資金調達の過程は明確、詳細で公衆がアクセスできるようにすべきである。
  2. 利益相反(COI)の管理
    2.1 ガイドライン作成グループ(GDG, Guideline Development Group)の選任に先立ち、参加を考慮中の個人は作成グループの活動との間でCOIを生じうるすべての利益と活動を招集者に書面で申告すべきである。
    ・申告は現在の、そして計画されている、CPGの想定されるスコープに関連する商業的(そこから収入のかなりの部分を得ている業務・サービスも含む)、非商業的、知的、患者‐公衆に関する活動のすべてを反映すべきである。
    2.2 GDG内でのCOIの申告:
    ・GDGメンバーのすべてのCOIはその仕事を開始する前に報告され、これから形成されるであろう作成グループによって議論されるべきである。
    ・各パネルメンバーはそのCOIが診療ガイドライン作成プロセスあるいは個別推奨にどのように影響しうるかを説明すべきである。
    2.3 (株式などの)処分
    ・GDGメンバーは各自および家族が保有する経済的投資を自ら売却・処分すべきで、その利益が診療ガイドラインの推奨により影響を受けうる企業体のマーケティングあるいはアドバイザリーボードに参加すべきではない。
    2.4 適用除外Exclusions
    ・可能な限りGDGメンバーはCOIを有するべきではない。
    ・いくつかの状況では、メンバーは診療ガイドラインに関連のあるサービスから収入のかなりの部分を得ている関連のある臨床専門家のような、COIを有するメンバーなしで、その仕事を遂行できないかもしれない。
    ・COIを有するメンバーはGDGの少数派にとどめるべきである。
    ・ 議長あるいは副議長はCOIを有する者であってはならない。
    ・資金提供者はCPG作成で何らかの役割を持ってはならない。
  3. ガイドライン作成グループの構成
    3.1 GDGは方法論の専門家、臨床家、そして診療ガイドラインで影響を受けるであろう集団などさまざまな人々から構成され、多くの専門分野のバランスがとれた構成にすべきである。
    3.2 患者と市民の参画は現在の患者あるいは疾患経験者、患者支援者あるいは患者・医療利用者団体の代表者をGDGに含むことで(少なくともクリニカルクエスチョン作成時点と診療ガイドライン草稿のレビューの時点で)強化すべきである。
    3.3 エビデンスの批判的吟味のトレーニングを含む、患者と医療利用者の代表の効果的な参加を増やす戦略がGDGにより採用されるべきである。
  4. 診療ガイドライン-システマティックレビューの交差(Intersection)
    4.1 診療ガイドライン作成者はInstitute of Medicineの比較効果研究のシステマティックレビューのスタンダードにより設定された基準を満たすシステマティックレビューを用いるべきである。
    4.2 システマティックレビューが特定のガイドラインに情報を与えるために特異的に実施される時は、GDGとシステマティックレビューチームは両者のスコープ、アプローチ、そしてアウトプットについて協働すべきである。

COIのことだけを論じるのではなく、いかに透明性を確保し、いかに信頼できる診療ガイドラインをつくるかという観点で議論することが重要ではないかと思います。

前立腺癌のPSAによるスクリーニング

US Preventive Services Task Force (USPSTF)は55歳から69歳までの男性の前立腺癌のPSA (Prostate Specific Antigen)の定期的検査によるスクリーニングは個別に適用すべきであると、その推奨GradeはCになっています。

一方、前立腺癌の発症は数多くの遺伝子がかかわっているpolygenicな機序によることが明らかにされています(1)。Schumacher FRが筆頭著者ですが、この研究には世界中の139施設が参加しており、多数の著者による、国際規模の一大研究の論文です。

さて、2019年Callender Tらは年齢とpolygenic profileに基づき、前立腺癌のリスクを推定し、リスクの程度によってPSAによるスクリーニングの有効性を解析した論文を発表しました(2)。10年の前立腺癌の発症リスクが4%になると、上記の年齢で4年ごとのPSAスクリーニングと比べ、過剰診断が3分の1減少するが、死亡は6.3%少ないだけという結果でした。費用対効果もすぐれており、一律にPSA測定によるスクリーニングを行うより、リスクで層別化して一定の閾値以上の場合、スクリーニングを実施べきではないかという結論です。

ポピュレーション全体で解析するとベネフィットがハーム(益が害)を上回るといえない場合でも、一定以上のリスクの亜群(Subpopulation)では正味の益が得られるということは他の状況でもありえます。Precision Medicineの方向へ進むことが必要なことは明らかです。それをどのような方法で証明するのか、どのような研究手法が必要なのか、考える必要があります。Callender Tらの研究は、”Benefit-harm and cost-effectiveness modelling study”とタイトルにも書かれている通り、実際に新たなデータを収集した訳ではありませんが、意思決定に有用ではないかと思います。

文献:
(1) Schumacher FR, Al Olama AA, Berndt SI, et al: Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nat Genet 2018;50:928-936. PMID: 29892016
(2) Callender T, Emberton M, Morris S, Eeles R, Kote-Jarai Z, Pharoah PDP, Pashayan N: Polygenic risk-tailored screening for prostate cancer: A benefit-harm and cost-effectiveness modelling study. PLoS Med 2019;16:e1002998. PMID: 31860675

Bias adjustment thresholds

2019年にAnnals of Internal MedicineにPhillippo DMらからネットワークメタアナリシスによるエビデンスの確実性からさらに臨床決断へのバイアスの影響を評価する方法について新しい手法が報告されました(1)。GRADE (Grading of Recommendations Assessment, Development and Evaluation)のエビデンス総体の確実性の評価方法(2, 3)と比較した結果が述べられています。

Bias adjustment thresholdsを用いる方法です。GRADEアプローチではバイアスリスク、非直接性、不精確性、非一貫性、出版バイアスを評価し、複数の研究をまとめたエビデンス総体の確実性の評価を行いますが、直接、臨床決断あるいは推奨への影響を評価するわけではありません。Phillippo DMらの方法では、臨床決断を逆転させるバイアスの閾値を評価し、実際の研究の結果に対してそれ以上のバイアスの影響があるかどうかを判断して、臨床決断が逆転しうるかどうかを解析しています。実際にGRADEの方法を用いた場合と異なる結論が得られることが示されています。

Phillippo DMらの論文は、もともと2016年に発表された同じグループのCaldwell DMらの論文(4)がもとになっています。さらに、2018年にはJournal of Royal Statistical SocietyのSeries AにPhillippo DM, Dias S, Ades AEらの論文(5)として発表されています。Journal of Royal Statistical Societyには2009年にTurner RMらのバイアスの定量的モデル化の論文(6)が発表されており、当然のことながら引用されています。

ネットワークメタアナリシスだけでなく通常のペア比較のメタアナリシスについても同じ手法が適用可能です。非常に重要な論文だと思います。

文献:
(1) Phillippo DM, Dias S, Welton NJ, Caldwell DM, Taske N, Ades AE: Threshold Analysis as an Alternative to GRADE for Assessing Confidence in Guideline Recommendations Based on Network Meta-analyses. Ann Intern Med 2019;170:538-546. PMID: 30909295
(2) Guyatt G, Oxman AD, Sultan S, Brozek J, Glasziou P, Alonso-Coello P, Atkins D, Kunz R, Montori V, Jaeschke R, Rind D, Dahm P, Akl EA, Meerpohl J, Vist G, Berliner E, Norris S, Falck-Ytter Y, Schünemann HJ: GRADE guidelines: 11. Making an overall rating of confidence in effect estimates for a single outcome and for all outcomes. J Clin Epidemiol 2013;66:151-7. PMID: 22542023
(3) Balshem H, Helfand M, Schünemann HJ, Oxman AD, Kunz R, Brozek J, Vist GE, Falck-Ytter Y, Meerpohl J, Norris S, Guyatt GH: GRADE guidelines: 3. Rating the quality of evidence. J Clin Epidemiol 2011;64:401-6. PMID: 21208779
(4) Caldwell DM, Ades AE, Dias S, Watkins S, Li T, Taske N, Naidoo B, Welton NJ: A threshold analysis assessed the credibility of conclusions from network meta-analysis. J Clin Epidemiol 2016;80:68-76. PMID: 27430731
(5) Phillippo DM, Dias S, Ades AE, Didelez V, Welton NJ: Sensitivity of treatment recommendations to bias in network meta-analysis. J R Stat Soc Ser A Stat Soc 2018;181:843-867. PMID: 30449954
(6) Turner RM, Spiegelhalter DJ, Smith GC, Thompson SG: Bias modelling in evidence synthesis. J R Stat Soc Ser A Stat Soc 2009;172:21-47. PMID: 19381328

下の図を見て、バイアスの効果についてちょっと考えてみてください。

Bias effects. RR: Risk Ratio; Log (Natural logarithm) of RR normally distribute and are additive, while on ratio scale RR is multiplicative.

Network Meta-analysisをOpenBUGSで

Network Meta-analysisもだいぶ普及してきているけど、Arm-based modelというのが出てきて、今までの相対的効果指標を統合するという考え方がチャレンジを受けたような状態になっていると思う。

今までの主流はContrast-based modelですよね。

そうなんだ。しかも、ベースラインリスクについは、外部のデータを用いることが勧められていたりする。Dias SたちはそれをBaseline modelと呼んでいる*。

ランダム化比較試験の対照群のデータをそのまま使わない方がいいという考え方にも一理ある。ランダム化比較試験は対象者がセレクトされているから、Real worldでは違う絶対リスクである可能性は高いと考えられるから。しかも、個人個人はリスクが異なるから、リスク比のような相対的効果指標をメタアナリシスで統合して、それを適用して絶対効果を考えた方がいいという考えは理解できる。しかし、一方で絶対リスクをどのデータから求めるべきか?なかなか簡単にはいかない。

リスク比のような相対的効果指標の値はベースラインリスクが変わっても大きくは変動しないということが経験的データでも示されていて、メタアナリシスで統合されるそれぞれの研究のベースラインリスクが異なっていても相対的効果指標はほぼ同じになるはずだからそれを統合したほうがいいと思われて来た。 

単純に論理的にのみ考えると、Arm-based modelは研究ごとのランダム割り付けを無視することになるという批判も正しいようにも思えるけど、実際にはそうでもないという反論もあって一概にはそうは言えないでしょう**。

まずはZhang J, et al: Network meta-analysis of randomized clinical trials: reporting the proper summaries. Clin Trials 2014;11:246-62. PMID: 24096635で出てくるArm-based modelのネットワークメタアナリシスのためのBUGSコードとデータ部分を示します。(こちらの論文もよく書かれています:Zhang J, et al: Bayesian hierarchical models for network meta-analysis incorporating nonignorable missingness. Stat Methods Med Res 2017;26:2227-2243. PMID: 26220535)

今日の目的はOpenBUGSを動かしてネットワークメタアナリシスを実行することなんだけど、このArm-based modelのネットワークメタアナリシスをやってみようと思う。OpenBUGSの使い方の第一歩は以前投稿しました。

(参考文献:
*Dias S, Ades AE, Welton NJ, Jansen JP and Sutton AJ: Network Meta-Analysis for Decision Making. 2018, John Wiley & Sons Ltd.
**Hong H, Chu H, Zhang J, Carlin BP: Rejoinder to the discussion of “a Bayesian missing data framework for generalized multiple outcome mixed treatment comparisons,” by S. Dias and A. E. Ades. Res Synth Methods 2016;7:29-33. PMID: 26461816

model {
for(i in 1:tS) {
p[i]<-phi(mu[t[i]]+ vi[s[i], t[i]]) # model
r[i]~dbin(p[i], totaln[i]) # binomial likelihood
}
for(j in 1:sN){
vi[j, 1:tN]~dmnorm(mn[1:tN], T[1:tN,1:tN]) # multivariate normal distribution
}
invT[1:tN, 1:tN]<-inverse(T[,])
for (j in 1:tN){
mu[j]~dnorm(0, 0.001)
sigma[j]<-sqrt(invT[j, j])
probt[j]<-phi(mu[j]/sqrt(1+invT[j, j]))
#population-averaged treatment specific event rate
}
T[1:tN,1:tN]~dwish(R[1:tN, 1:tN], tN) # Wishart prior
for (k in 1:tN) {
rk[k]<- tN+1-rank(probt[],k) # ranking
best[k]<-equals(rk[k],1) # prob {treatment k is best}
}
for (j in 1:tN){ # calculation of RR, RD and OR
for (k in (j+1):tN){
RR[j, k] <- probt[k]/probt[j]
RD[j, k] <- probt[k]-probt[j]
OR[j, k] <- probt[k]/(1-probt[k])/probt[j]*(1-probt[j])
}
}
}
#DATA
list(tN=4,sN=24,tS=50,mn=c(0, 0, 0, 0),R=structure(.Data=c(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1),.Dim=c(4,4)))
s[] t[] r[] totaln[]
1 1 9 140
1 3 23 140
1 4 10 138
2 2 11 78
2 3 12 85
2 4 29 170
3 1 75 731
3 3 363 714
4 1 2 106
4 3 9 205
5 1 58 549
5 3 237 1561
6 1 0 33
6 3 9 48
7 1 3 100
7 3 31 98
8 1 1 31
8 3 26 95
9 1 6 39
9 3 17 77
10 1 79 702
10 2 77 694
11 1 18 671
11 2 21 535
12 1 64 642
12 3 107 761
13 1 5 62
13 3 8 90
14 1 20 234
14 3 34 237
15 1 0 20
15 4 9 20
16 1 8 116
16 2 19 146
17 1 95 1107
17 3 134 1031
18 1 15 187
18 3 35 504
19 1 78 584
19 3 73 675
20 1 69 1177
20 3 54 888
21 2 20 49
21 3 16 43
22 2 7 66
22 4 32 127
23 3 12 76
23 4 20 74
24 3 9 55
24 4 3 26
END

上のブロックをすべて選択して、コピーして、OpenBUGSを立ち上げて、FileメニューからNewを選んで、エディター画面に貼り付けました。

そうそう。そしたら、下の図のように、ModelメニューからSpecification…を選んで、Specification Toolを表示させ、コードのmodelの文字列を選択して反転した状態で、Specification Toolのcheck modelボタンをクリックします。

check model

ボトムバーにmodel is syntactically correctと表示されました。確か次のステップはデータの読み込み、load dataでしたよね。

そうそう。#DATAのlistの文字列を選択して反転させて、Specification Toolのload dataボタンをクリックしましょう。

listをダブルクリックしたら、Specification Toolのload dataボタンがアクティブになりました。クリックしました。あっ、ボトムバーにdata loadedと表示されました。

load data

それでは次に解析対象のデータを読み込ませます。このデータはRのパッケージであるpcnetmetaやいろんなパッケージに付属している禁煙治療のランダム化比較のデータです。
研究数は24件、治療の数は4種類(1) no contact (NC); 2) self-help (SH); 3) individual counselling (IC); 4) group counselling (GC)で、治療アームの数は50です。一行がひとつの治療アームです。コードの#DATA中のtNが治療の数、sNが研究数、tSが比較ペアの数、に対する変数名になってます。治療の種類は次のデータ部分のt[]という変数に1~4の整数で指定されています。研究番号は同じくs[]という変数で表してます。
このデータソースはHasselblad V (1998) “Meta-analysis of multitreatment studies.” Med Decis Making 18(1), 37–43. だそうです。

なるほど。残りのデータは表形式みたいですね。確か、Excelで用意して、コピーして、OpenBUGSのEditメニューからPaste Special…でPlain Textで貼り付けるんでしたね。

その通り。で、s[]から一番下のENDの最後まで選択して、反転させ、Specification Toolのload dataボタンをクリックしてください。

やりました。ボトムバーにdata loadedと表示されたので、Specification Toolのcompileボタンをクリックします。
ボトムバーにmodel compiledと出ました。
load initsとgen initsボタンがアクティブになりましたね。

今回は、初期値の設定のためのデータを特に用意していません。事前分布の値priorをサンプリングする場合、幅広い分布の場合、初期値を設定しないと、非常にはじっこの方の値が得られた場合、Markov Chain Monte Carlo (MCMC)によるGibbsサンプリングがうまく動かなくなることがあるので、そのような場合は、初期値の設定用のデータを用意した方がいいです。書き方は、#DATAのlist()と同じような書き方です。
今回は、T[1:tN,1:tN]~dwish(R[1:tN, 1:tN], tN) # Wishart priorのコードの部分で、マトリックスデータRからWishart分布のランダムサンプリングを行って、マトリックスTに格納する操作をしているので、いずれにせよgen initsの実行が必要になります。load initsなしで、gen initsを実行すると、すべてのランダムサンプリングが実行され、それらの値からMCMCが開始されることになります。

gen initsボタンをクリックしたら、ボトムバーにinitial values generated. model initializedと出ました。
次は、ModelメニューからUpdate…を選んで、Update Toolでupdatesの回数を設定するんでしたね。10000回に設定してみました。それで、updateボタンをクリックしてバーンインを実行します。

Update Tool

あっという間にバーンインが終了しました。

次は、サンプリングした値を記録する変数nodeを設定するんでしたね。InferenceメニューからSamples…を選んで、Sample Monitor Toolを表示して、nodeの右のフィールドに、probtと入力して、setボタンをクリックします。続けて、RR、RD、OR、rk、bestと入力して順次setボタンをクリックしました。全部で6個の変数です。
probtは各治療群の絶対リスクAbsolute risk、RRは各治療ペアでのリスク比、RDは同じくリスク差、ORはオッズ比、rkは各介入が1、2位…の確率、bestは各介入が最善である確率ですね。

その通り。それでは、サンプリングの個数を50000に設定して、つまり、Update Toolのupdatesを50000に変えて、updateボタンをクリックしましょう。

今度は30秒くらいかかりました。結果を見るには、Sample Monitor Toolでnodeのフィールドに*を入力してstatsボタンをクリックするんでしたね。これで、記録された全部の変数nodeの平均値、中央値、95%確信区間などの値が表示されるはずですよね。
出ました。

この結果で、Arm-based modelの特徴として、各治療群の絶対リスクAbsolute riskが得られるということがあげられます。このデータでは、probtの値が大きい方がよい結果です。つまり禁煙成功率が高いということです。
治療4が一番成績がいいことが分かりますね。これはGroup counsellingが禁煙効果が最も高いということですね。best[4]の平均値が0.6667なので、治療4が最善である確率がおよそ0.67であることが分かります。

なるほど、RR, OR, RDについてはすべてのペア比較の値が出てますね。
InferenceメニューからComparison Tool…を選んで、Comparison Toolを表示して、nodeにRRと入力して、caterpillarプロットを表示してみました。プロットを右クリックして、Propertiesからフォントを変えたりしてみました。
probtとRRのdensity(確率密度分布)も表示してみました。

density

リスク比はそのままだと、正規分布ではないですね。対数変換すると左右対称の分布になるはずです。

さて、今回はArm-based modelを用いたNetwork Meta-analysisをOpenBUGSで行いました。同じ解析をRのパッケージであるpcnetmetaを使って実行することができます。同じ結果が得られるはずです。nma.ab.bin()という関数を使うんだけれど、model=”het_cor”にした場合、今回のモデルと同じになります。pcnetmetaでは、下のような、Network Graphも作成できます。

pcnetmetaだけでなく、RのパッケージのプログラムやデータファイルはGitHubで見られるんですね。これってすごいですね。

今回は、OpenBUGSの動かし方についての説明だけで、Network Meta-analysisの統計学的モデルの説明はしなかったけれど、本当はそっちが重要ですね。Arm-based modelは今までの、通常のペア比較だけのメタアナリシスに対しても適用できて、しかも単一群のつまりSingle-armのコホート研究や疾患レジストリーのデータなども活用できる可能性がある。Zhang J, et al: Bayesian hierarchical methods for meta-analysis combining randomized-controlled and single-arm studies. Stat Methods Med Res 2019;28:1293-1310. PMID: 29433407の論文でわかるよ。それと、間接比較の際に、欠損値の補完という考えを適用するというHong Pらの方法も画期的ですね。Hong H, et al: A Bayesian missing data framework for generalized multiple outcome mixed treatment comparisons. Res Synth Methods 2016;7:6-22. PMID: 26536149

これはすごい進歩ですね。本当に。まだまだ議論が続きそうな気配ですね。問題は、直接比較と間接比較のインコヒレンスだけではないですね。

最後にArm-based modelとContrast-based modelを式で表したものを見せるね。

Arm-based model
Contrast-based model