治療の効果の大きさを直感的に理解してもらうには、数字より図で示した方がいいか?おそらく個人によって、数値の方が分かりやすい人と、グラフの方が分かりやすい人がいるでしょう。
2群を比較するランダム化比較試験あるいはそれらのメタアナリシスの結果からアウトカム毎に対照群の絶対リスク(イベント率;連続変数の場合は平均値)、介入群の絶対リスク、リスク差(連続変数の場合は平均値差)=絶対効果を提示された場合、どちらの治療を受けるのが最善かを決めてもらうために、どのような結果の提示方法がいいのか?
GRADEアプローチのSummary-of-Findings (SoF)tableにはこれらのデータと研究数、対象者数、リスク比、オッズ比、ハザード比などの相対効果指標とエビデンスの確実性が表形式でまとめられています。ひとつのアウトカムについて、これらのデータが提示されています。たとえば、COVID-19に関する推奨を集積しているサイトCOVID19 Recommendations (https://covid19.recmap.org/)のWHOのステロイド全身投与に関する推奨のページを見ると、Interactive Summary of Findingsの項に9つのアウトカムに対する効果がまとめられており、例えば、28日までのMortalityは1000人中160人の死亡が126人に減り、34人(48~16人)少なくなる、リスク比0.79 (0.7-0.9)、エビデンスの確実性はModerateと記されています。
高血糖は1000人中46人増加、高ナトリウム血症は同じく26人増加。その他のアウトカムについてもデータが提示されています。これら複数のアウトカムに対する効果を益も害も含めてまとめて、正味の益がどれくらいなのかを評価することはなかなか難しい作業です。
特に益と害の大きさは、アウトカムの重要性=患者の価値観によって変わってくるうえ、主観的なものなので同一人物でも別の機会に同じ評価をするかどうかわかりません。そもそもアウトカムの重要性を数値として表すことができても、本当にその個人の価値観を正確にとらえられたかもわかりません。つまり、アウトカムの重要性にさまざまな値を設定して、どちらの治療が正味の益が大きいかをいろいろ試したうえで、決めることが必要になるでしょう。Shared Decision Makingを如何に科学的に行うかという観点からも考える必要があります。
複数のアウトカムに対する介入の効果をイベント数からPictogramで示し、各アウトカムの重要性で重みづけした場合のイベント数の総和、正味の益Net benefitを計算するウェブページを作ってみました。同時に、アウトカム毎のアウトカムの重要性で未調整の場合と調整済みのイベント数を棒グラフで示すようにしました。図1に一つの例を示します。(現在の所、二値変数アウトカムだけが対象で、益のアウトカム4つ、害のアウトカム4つまで取り扱えます)。→Link
アウトカムの重要性は最も重要なアウトカムの場合100とし、それに対して相対的な重要性を数値で設定します。したがって、調整済みのイベント数は、最も重要なアウトカムに換算した人数になります。例えば、重要性を50と設定したアウトカムが2人で起きていた場合、重要なアウトカムであれば1人で起きたのと同じとみなすことになります。最も重要なアウトカムを1.0、中等度に重要なアウトカムに0.5、重要でないアウトカムに0という値を設定することもできます。もし、このような値を設定するとGail/NCIの方法で提案されている重みづけと同じになります。
また、アウトカムが重複して起きることに対しての調整はしていません。一人に2つのアウトカムが生起しても2人にそれぞれのアウトカムが生起した場合と同じ扱いになります。なお、それが、2つの介入の比較で問題になるケースを想定することはなかなか困難だと思います。
重要なアウトカムは一つ目に設定すようにしてありますが、それ以外のアウトカムを最重要として、そこに100を設定しても問題ありません。設定されているOutcome Valueの値から最大値を見つけ出すようにプログラムしてありますので、どのアウトカムが最大値でも、それを基準に計算を行います。なお、入力後、値を保持したHTMLファイルとしてダウンロード、保存できますが、JavaScriptのプログラムであり、ローカルのファイルを開いて作業する際はインターネット接続の環境でないと動きません。
図1の急性虫垂炎の例はこちらのLinkです。やはり、図示するだけで、理解しやすくなるというわけではないです。確かなことは、複数のアウトカムに対する介入の効果をまとめて、全体として十分な益(望ましい効果)が得られるかを知るには、計算しないとわからないということでしょう。Outcome Valueの値をいろいろ変えて結果がどうなるか試してみて下さい。
詳しい解説はまた別の機会に。明日から、新しい年、2023年が始まります。I wish you a happy new year.
文献:
•McNutt, Robert Alan. Your Health, Your Decisions: How to Work with Your Doctor to Become a Knowledge-Powered Patient. 2016, The University of North Carolina Press. →Amazon
•Gail MH, Costantino JP, Bryant J, Croyle R, Freedman L, Helzlsouer K, Vogel V: Weighing the risks and benefits of tamoxifen treatment for preventing breast cancer. J Natl Cancer Inst 1999;91:1829-46. PMID: 10547390
•Marsh K, Goetghebeur M, Thokala P: Multi-criteria decision analysis to support healthcare decisions. Springer, 2017. →Amazon