Pictogram1000ff 正味の益とピクトグラム作成

益のアウトカムと害のアウトカムを最大10個まで設定可能で、絶対リスク=単一群のイベント数を1000人あたりの人数で設定し、アウトカムの重要性を0~100で設定して、対照群と介入群の正味の益の差を計算するとともに、ピクトグラムとイベント数の差およびアウトカムの重要性で重みづけしたイベント数の差をグラフ表示するウェブツールを作成しました。ベーラインリスクとRR, OR, HR, RDの値から介入群のイベント数を計算することもできます→https://sr.xrea.jp/tool/picto/pictogram1000ff.htm

COVID-19のステロイド全身投与に関するWHOの推奨のデータを用いた例がこちらです→https://sr.xrea.jp/tool/picto/covid-19-systemic-steroid-who.htm

アウトカムの重要性の値は個人で異なるので、いろいろ値を変更して正味の益がどう変わるか試すことができます。

Pictogram効果の大きさ・益‐害の大きさを図示する

治療の効果の大きさを直感的に理解してもらうには、数字より図で示した方がいいか?おそらく個人によって、数値の方が分かりやすい人と、グラフの方が分かりやすい人がいるでしょう。

2群を比較するランダム化比較試験あるいはそれらのメタアナリシスの結果からアウトカム毎に対照群の絶対リスク(イベント率;連続変数の場合は平均値)、介入群の絶対リスク、リスク差(連続変数の場合は平均値差)=絶対効果を提示された場合、どちらの治療を受けるのが最善かを決めてもらうために、どのような結果の提示方法がいいのか?

GRADEアプローチのSummary-of-Findings (SoF)tableにはこれらのデータと研究数、対象者数、リスク比、オッズ比、ハザード比などの相対効果指標とエビデンスの確実性が表形式でまとめられています。ひとつのアウトカムについて、これらのデータが提示されています。たとえば、COVID-19に関する推奨を集積しているサイトCOVID19 Recommendations (https://covid19.recmap.org/)のWHOのステロイド全身投与に関する推奨のページを見ると、Interactive Summary of Findingsの項に9つのアウトカムに対する効果がまとめられており、例えば、28日までのMortalityは1000人中160人の死亡が126人に減り、34人(48~16人)少なくなる、リスク比0.79 (0.7-0.9)、エビデンスの確実性はModerateと記されています。

高血糖は1000人中46人増加、高ナトリウム血症は同じく26人増加。その他のアウトカムについてもデータが提示されています。これら複数のアウトカムに対する効果を益も害も含めてまとめて、正味の益がどれくらいなのかを評価することはなかなか難しい作業です。

特に益と害の大きさは、アウトカムの重要性=患者の価値観によって変わってくるうえ、主観的なものなので同一人物でも別の機会に同じ評価をするかどうかわかりません。そもそもアウトカムの重要性を数値として表すことができても、本当にその個人の価値観を正確にとらえられたかもわかりません。つまり、アウトカムの重要性にさまざまな値を設定して、どちらの治療が正味の益が大きいかをいろいろ試したうえで、決めることが必要になるでしょう。Shared Decision Makingを如何に科学的に行うかという観点からも考える必要があります。

図1. 成人の急性虫垂炎の抗菌薬投与による保存的治療と外科的虫垂切除の比較。4つのアウトカムを設定。

複数のアウトカムに対する介入の効果をイベント数からPictogramで示し、各アウトカムの重要性で重みづけした場合のイベント数の総和、正味の益Net benefitを計算するウェブページを作ってみました。同時に、アウトカム毎のアウトカムの重要性で未調整の場合と調整済みのイベント数を棒グラフで示すようにしました。図1に一つの例を示します。(現在の所、二値変数アウトカムだけが対象で、益のアウトカム4つ、害のアウトカム4つまで取り扱えます)。→Link

アウトカムの重要性は最も重要なアウトカムの場合100とし、それに対して相対的な重要性を数値で設定します。したがって、調整済みのイベント数は、最も重要なアウトカムに換算した人数になります。例えば、重要性を50と設定したアウトカムが2人で起きていた場合、重要なアウトカムであれば1人で起きたのと同じとみなすことになります。最も重要なアウトカムを1.0、中等度に重要なアウトカムに0.5、重要でないアウトカムに0という値を設定することもできます。もし、このような値を設定するとGail/NCIの方法で提案されている重みづけと同じになります。

また、アウトカムが重複して起きることに対しての調整はしていません。一人に2つのアウトカムが生起しても2人にそれぞれのアウトカムが生起した場合と同じ扱いになります。なお、それが、2つの介入の比較で問題になるケースを想定することはなかなか困難だと思います。

重要なアウトカムは一つ目に設定すようにしてありますが、それ以外のアウトカムを最重要として、そこに100を設定しても問題ありません。設定されているOutcome Valueの値から最大値を見つけ出すようにプログラムしてありますので、どのアウトカムが最大値でも、それを基準に計算を行います。なお、入力後、値を保持したHTMLファイルとしてダウンロード、保存できますが、JavaScriptのプログラムであり、ローカルのファイルを開いて作業する際はインターネット接続の環境でないと動きません。

図1の急性虫垂炎の例はこちらのLinkです。やはり、図示するだけで、理解しやすくなるというわけではないです。確かなことは、複数のアウトカムに対する介入の効果をまとめて、全体として十分な益(望ましい効果)が得られるかを知るには、計算しないとわからないということでしょう。Outcome Valueの値をいろいろ変えて結果がどうなるか試してみて下さい。

詳しい解説はまた別の機会に。明日から、新しい年、2023年が始まります。I wish you a happy new year.

文献:
•McNutt, Robert Alan. Your Health, Your Decisions: How to Work with Your Doctor to Become a Knowledge-Powered Patient. 2016, The University of North Carolina Press. →Amazon
•Gail MH, Costantino JP, Bryant J, Croyle R, Freedman L, Helzlsouer K, Vogel V: Weighing the risks and benefits of tamoxifen treatment for preventing breast cancer. J Natl Cancer Inst 1999;91:1829-46. PMID: 10547390
•Marsh K, Goetghebeur M, Thokala P: Multi-criteria decision analysis to support healthcare decisions. Springer, 2017. →Amazon

疾患確率-ベースラインリスク-治療閾値

ベースラインリスクがどれくらい高かったら治療を開始すべきか?についてDjulbegovic Bらのアプローチを前投稿で紹介しました。彼らの方法では、疾患確率を1.0に設定して、ベースラインリスクの値を変動させた場合に、益が害を上回るベースラインリスクの値を算出します。

別の観点から見ると、疾患確率とベースラインリスクのふたつの変数によって益と害の大きさが決まり、益の大きさが害を上回る疾患確率の値と、ベースラインリスクの値が治療閾値になるということになります。Djulbegovic Bらの論文の例に対して、疾患確率とベースラインリスクの両者を含む決定木Decision treeを作成してみました(図1)。

図1.疾患確率とベースラインリスクによる治療閾値を計算するための決定木。上段が治療しない場合、下段が治療する場合。

この決定木は治療を選択した後、P(D+)の確率で疾患が起き、その後VTE再発、出血、無症状の枝に分かれ、それぞれが図中に示す確率で起きることをモデル化しています。こうすることで、疾患確率=P(D+)とベースラインリスク=VTE再発確率Pn(O1)の二つの変数を変動させた場合の効用値を治療しない場合と治療する場合で比較することができるようになります。

この決定木に基づいて、治療閾値を計算する方法を図2に示します。VTE再発が治療によりリスク比(RR)0.188で抑制され、一方で出血の副作用が治療により4.8%起きます。期待効用は何も起きない場合を1.0とし、VTE再発は0.3、出血は0.3とし、これら二つのアウトカムの重要性(Values)は1:1、すなわちRVHを1に設定してあります。

図中の疾患確率に基づく治療閾値はベースラインの値を固定して、疾患確率を変動させることで、また、アウトカムの発生確率に基づく治療閾値は疾患確率を1に固定して、ベースラインリスクを変動させることで、計算しています。

図2.治療閾値の計算。

図2の右下にアウトカムの発生確率に基づく、すなわち、ベースラインリスクがいくつになれば益が害を上回るかを示していますが、0.05911と前回と同じ値が得られています。

通常の決定木Decision treeのモデルは今回示したものだと思いますし、このモデルの方が理解が容易だと思います。

Excelのシートのサイズが大きく、式も多いので、詳細はこちらからファイルをダウンロードして見てください。Download

文献:

Djulbegovic B, Hozo I, Mayrhofer T, van den Ende J, Guyatt G: The threshold model revisited. J Eval Clin Pract 2019;25:186-195. doi: 10.1111/jep.13091 PMID: 30575227

ベースラインリスクと治療閾値

アウトカムが起きる確率がどれくらいになったら治療をすべきか?すなわち、ベースラインリスクがどれくらい高かったら治療を開始すべきか?についてDjulbegovic Bらは図1のような方法を提示しています。

図1. ベースラインリスクと治療閾値。

文献:Djulbegovic B, Hozo I, Mayrhofer T, van den Ende J, Guyatt G: The threshold model revisited. J Eval Clin Pract 2019;25:186-195. doi: 10.1111/jep.13091 PMID: 30575227

この例では、静脈血栓塞栓症(Venous thromboembolism, VTE)の患者で原疾患の診断が確定している、すなわち疾患確率p=1に設定し、アウトカムVTEの再発の確率、すなわちベースラインリスクが0~1まで変動させた場合に、抗凝固薬rivaroxaban投与を開始すべき値の求め方を述べています。益のアウトカムはVTE再発でそれの抑制が望ましい効果になり、プラセボで0.071の確率で起きるのに対して、投薬によりリスク比0.188、相対リスク減少RRR0.812の効果が得られます。害のアウトカムである出血事象の起きる確率Hrxは0.048で、プラセボでは0に設定しています。図1の中で、RVHは害のアウトカムの重要性を益のアウトカムに対して何倍とみなすか?すなわち患者の価値観によって設定する値で、この例では1に設定していますが、もし、出血事象がVTE再発に比べて2倍重要と考えるなら2、半分と考えるなら0.5に設定します。

アウトカムの発生確率の、すなわちベースラインリスクの治療閾値はRVH*Hrx/RRRで算出され、この例では、0.059になります。グラフで示すと図2の様になります。

図2.ベースラインリスクと期待効用による治療閾値。青はU(A-)すなわちプラセボ、オレンジはU(A+)すなわち抗凝固薬投与の場合を示します。

Djulbegovic Bらは、疾患確率とアウトカムの起きる確率と二重にカウントすることを避けるため、図1のように疾患確率を1に設定すると説明しています。実は、この点については、疾患確率とアウトカムの起きる確率の両方を取り込んだDecision treeを作成することによって解決できます。次回それについて解説しようと思います。

治療閾値は益と害(Benefit and harm)あるいは益とコスト(Benefit and cost)、さらにその比B/HあるいはB/Cで決まりますが、治療閾値を超えた疾患確率あるいはアウトカムの起きる確率ではB>Hとなりますが、BとHの差、すなわち正味の益Net benefitは疾患確率あるいはアウトカムの起きる確率が高くなるほど大きくなります。治療閾値はそれを超えたら治療をしてもいい値ですが、疾患確率の場合は、益を最大化するには、何らかの診断法を実施して疾患確率を高くしてから治療を開始すべきと考えられますし、実臨床ではそれが実行されていると思います。