COVID-NMA initiative

COVID-NMAはWHOとCochraneのサポートを受けて、COVID-19の臨床試験のLiving mappingを提供している国際的なイニシアティブです。ステアリングコミッティにはパリ大学疫学教授Isabelle Boutron他、Cochraneの関係者が多く、フランス、アイルランド、ドイツ、デンマーク、チリ、南アフリカ、イタリアからの委員が含まれています。 Link

Boutron I, Chaimani A, Meerpohl JJ, Hróbjartsson A, Devane D, Rada G, Tovey D, Grasselli G, Ravaud P, COVID-NMA Consortium: The COVID-NMA Project: Building an Evidence Ecosystem for the COVID-19 Pandemic. Ann Intern Med 2020;173:1015-1017. doi: 10.7326/M20-5261 PMID: 32931326

Operating Teamは(カッコ内に人数を示します)Coordination and project management (3)、Editorial advisor (1)、Web development (1)、Screening (4)、Data architecture desing (3)、Data extraction (17)、Analysis (3)、Evidence grading (5)、ROBINS-I assessment (20)、Bias assessment monitoring (7)、Mapping (2)、Data integration (5)、Data visualization (5)、Editorial team (6) とかなり大きな組織で、Cochrane Franceの人が多いですが、多国籍のチームです。

最近の論文で、RとShinyを用いたLiving meta-analysisのためのウェブアプリを発表しています。Evrenoglou T, Boutron I, Seitidis G, Ghosn L, Chaimani A: metaCOVID: A web-application for living meta-analyses of COVID-19 trials. Res Synth Methods 2023;14:479-488. doi: 10.1002/jrsm.1627 PMID: 36772980

世界的なCOVID-19の感染の縮小とともに、2023年からはLiving mappingはCOVID-19ワクチン、Living evidence synthesisはワクチンのブースターの臨床試験についてのみアップデートを行う方針だそうです。

Rのsource()関数の応用

統計解析プラットフォームとして広く使われており、プログラミング言語であるRにはsource(URL)という関数があります。Rのスクリプトをウェブサーバーにアップロードしておき、そのファイルのURLをsource()関数の引数として設定し、Rでそれを実行させると、ウェブサーバーからスクリプトが読み込まれて実行されます。

解析対象のデータはクリップボードにコピーしておいて、それをread.delim()関数で変数に読み込んで、その変数に対して処理を行うスクリプトを用意しておくことで、各自用意したデータを解析するシステムが作れます。解析したいデータはCSVファイルで用意して、それを読み込ませて解析する方法も可能です。

source()関数で読み込むRのスクリプトはウェブサーバーに置いてありますが、それを読み込んで実行させるスクリプトは各自のPCにインストールしたRで実行します。それを読み込んで実行させるスクリプトは、各自で保存しておくこともできますし、別のウェブページから提供することも可能です。useRsもそのようなウェブページのひとつですが、別の方法でも同じことが可能です。

例えば、メタアナリシスのさまざまなモデルに対応したスクリプトを用意して、ウェブページで選択して、実行させるというようなことができます。

システマティックレビューに必要なExcelシートを集め、メタアナリシスのためのRのスクリプトを含めたBookを作りました。2023_excel_book_for_sr_v.0.96.xlsxから自分の必要なシートをシートのタブを右クリックして、My SR Book.xlsxにコピーを追加し、目次のシートに各シートの名前を入力してそれらへのリンクを設定し、利用することができます。

リスク比、オッズ比、リスク差、ハザード比、平均値差、標準化平均値差 (RR, OR, RD, HR, MD, SMD)のメタアナリシスをRのmetaforパッケージで、診断精度研究のメタアナリシスをRのmadaパッケージを利用して実行します。Forest plotの作成にはRのforestplotパッケージを用いる場合もあります。Rをインストールし、必要なパッケージをRでインストールしてから使います。

Pictogram1000ff 正味の益とピクトグラム作成

益のアウトカムと害のアウトカムを最大10個まで設定可能で、絶対リスク=単一群のイベント数を1000人あたりの人数で設定し、アウトカムの重要性を0~100で設定して、対照群と介入群の正味の益の差を計算するとともに、ピクトグラムとイベント数の差およびアウトカムの重要性で重みづけしたイベント数の差をグラフ表示するウェブツールを作成しました。ベーラインリスクとRR, OR, HR, RDの値から介入群のイベント数を計算することもできます→https://sr.xrea.jp/tool/picto/pictogram1000ff.htm

COVID-19のステロイド全身投与に関するWHOの推奨のデータを用いた例がこちらです→https://sr.xrea.jp/tool/picto/covid-19-systemic-steroid-who.htm

アウトカムの重要性の値は個人で異なるので、いろいろ値を変更して正味の益がどう変わるか試すことができます。

相対効果指標から絶対効果を求める How to convert RR OR HR to RD

介入の効果は対照群と比較した相対的効果指標であるリスク比Risk Ratio (RR)、オッズ比Odds Ratio (OR)、生存分析の場合はハザード比Hazard Ratio (HR)で評価されることが一般的です。Risk Difference (RD)をメタアナリシスで統合することももちろんできますが、これらの効果指標が用いられることが多く、エビデンス総体の非一貫性の評価の際はRRまたはHRを用いることが望ましいとされています。ネットワークメタアナリシスではORが用いられることが多いようです。まずこれらの効果指標がどのように計算されるかを見ておきましょう。

図1.効果指標のタイプと計算法。
図2.イベント確率(割合)、ハザード率およびハザード比の関係。介入群のハザード率を対照群のハザード率で割り算するとハザード比が得られる。対照群のハザード率にハザード比を掛け算すると介入群のハザード率が得られる。

一方、望ましい効果(益)の大きさ、望ましくない効果(害)の大きさを異なるアウトカム間で比較するには、絶対効果を示すリスク差Risk Difference (RD)を用いる必要があります。RR, OR, HRでは同じ値であってもベースラインリスクが異なるとRDが異なるので、絶対効果の大きさは同じとはならず、そのまま比較することはできないことは明らかです。一方、RDは値が2倍になれば、2倍の人数の人が影響を受けることは明確です。

メタアナリシスでOR、RRあるいはHRを統合した場合、それらについて、エビデンスの確実性の評価をランダム化比較試験であれば、バイアスリスク、非直接性、不精確性、非一貫性、出版バイアスの5ドメインから評価します。その先、望ましい効果(益)、望ましくない効果(害)の大きさと、益と害のバランス=正味の益を評価するためには、絶対効果=RDを求める必要があります。そのため、GRADEアプローチではSummary-of-Findings (SoF)table結果のまとめ表では①相対効果指標と95%信頼区間、②対照群の絶対リスク、③介入群の絶対リスク、and/or、④絶対効果と95%信頼区間を記述することが求められています。相対効果指標と95%信頼区間はメタアナリシスから得られます。対照群の絶対リスクはメタアナリシスに含めた研究の対照群の総症例数から算出した値、疾患レジストリなど他のデータソースからの値、想定される高・中・低リスクの値を設定するなどが考えられます。

絶対効果はRR、OR、HRと対照群の絶対リスク=CER (Comparator Event Rate)から以下に示す方法で計算することができます。

図3.相対効果指標から絶対効果を求める。CER×(1-RR)で得られる絶対効果の値は、対照群の絶対リスク-介入群の絶対リスクに相当します。CER×(RR – 1)で得られる絶対効果の値は介入群の絶対リスク-対照群の絶対リスクの値になります。これら2つの値は正負が逆になりますが、絶対値は同じです。

ORからRRを計算する方法は図4に、HRからRRを計算する方法は図5に示す通りです。数式の形を変えるだけなので、単なる数学的な課題で、だれが考えても同じになります。

図4.ORからRDを計算する。ここに示すRDの計算は図3とは逆に、介入群の絶対リスク-対照群の絶対リスクを計算しています。
図5.HRからRDを計算する。ここに示すRDの計算は図3とは逆に、介入群の絶対リスク-対照群の絶対リスクを計算しています。

RDを計算する際に、介入群の絶対リスク-対照群の絶対リスクを計算する方が分かりやすいと思います。図4と図5、6は逆になっていますが、測定されるアウトカムが有害事象なのか有益事象なのかによってもどちらが分かりやすいかはまた変わってきます。

いろいろな考え方がありえますが、正味の益=益の大きさ-害の大きさで計算し、プラスの値であれば、正味の益が大きく、マイナスの値であれば正味の害が大きいというようにするためには、益のアウトカムには有益事象を測定し、害のアウトカムには有害事象を測定し、介入群の絶対リスク-対照群の絶対リスクを計算すると介入群の益が大きければ益はプラスの値、介入群の害が小さいと害はマイナスの値になり、正味の益=益の大きさ-害の大きさの計算ではプラスの値からマイナスの値を引き算するので、全体としてプラスが大きくなります。もし、介入群の害が対照群より大きい場合は、害はプラスの値になり、正味の益はその分引き算されて小さくなります。このような取り扱いが分かりやすいのではないかと思います。

アウトカムが有害事象か有益事象かに合わせてプラスマイナスを変えて計算し、RD=CER×(1-RR)ですべて計算する方法もあり得ます。その方が分かりやすい人もいると思います。また、グラフ化する際にはもう少し考慮すべき点がありますが、皆さんも考えてみて下さい。

そして、100人あたり、1000人あたり、10000人あたりの頻度人数にするには、RDにこれらの値を掛け算することになり、四捨五入するか切り捨てるかも決めておく必要があるでしょう。